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Abstract. In this paper we formulate Lagrangian mechanics as a constrained quad-

ratic minimization problem. This quadratic minimization problem is then solved us-

ing the theory of generalized inverses of matrices thereby obtaining the explicit equa-

tions of motion of constrained, discrete mechanical systems. The approach extends

the boundaries of Lagrangian mechanics in that we provide a general formulation for

describing the constrained motion of such systems without either the use of Lagrange

multipliers or the use of quasi-coordinates. An important feature of the approach

is that we do not require prior knowledge of the specific set of constraints to ac-

complish this formulation. This makes the equations presented here more generally

useful, and perhaps more aesthetic, than the Gibbs-Appell equations which require a

felicitous choice of problem-specific quasi-coordinates. The new equations of motion

presented here are applicable to both the holonomic and nonholonomic constraints

that Lagrangian mechanics deals with. They are obtained in terms of the usual gen-

eralized coordinates used to describe the constrained system. Furthermore, they can

be integrated by any of the currently available numerical integration methods, thus

yielding analytical and/or computational descriptions of the motions of constrained

mechanical systems.

Introduction. About a hundred years after Newton's Principia, Lagrange, in 1788

[1], presented his Mecanique Analytique, a book where he based the foundations

of mechanics on the principles of virtual work and D'Alembert's principle. While

Johann Bernoulli, Euler, and Leibnitz had made important contributions to this line

of thinking, it was Lagrange who provided a general theory for constrained mechan-

ical systems using the notion of generalized coordinates [1],

Lagrangian mechanics deals with constrained, discrete systems where the con-

straints are all equality constraints that can be represented in Pfaffian form [2, 3].

When these constraints are integrable, they are referred to as holonomic, otherwise
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as nonholonomic. Thus for a system of N particles whose configuration is described

by the n coordinates qx, q2, ... , qn , Lagrangian mechanics informs us that

where the kinetic energy T and the generalized forces Qs are, in general, functions

of all the q; and q. (j = 1, 2, ... , n) and of time t. The consistent constraints

are described by the m relations (m < n)

n

Y^DrAs~ Dr = ° (r= 1, 2, ... , m), (2)
5=1

where Drs and Dr are, in general, functions of qi (j — 1, 2, , n), and t. The

equation set (2) may, in general, contain holonomic as well as nonholonomic con-

straints. When the n coordinates that describe the system's configuration form a

"generalized set of coordinates", the constraint equations (2) are all nonholonomic.

This is because each of the holonomic constraints is used to eliminate one configu-

ration coordinate thereby yielding the minimum number of coordinates needed to

describe the system. Lagrange pointed out that the infinitesimal quantities, Sqs,

in Eq. (1) are not arbitrary, but are constrained to be the virtual displacements of

the mechanical system. These virtual displacements satisfy the following constraint

equations:
n

^ZDrsSqs = 0 (r = 1, 2, ... , m). (3)
5=1

Thus, Eqs. (1), (2), and (3) form the basic equations of Lagrangian mechanics. We

shall refer to this set as formulation LI.

The constraints on the infinitesimal displacements dqs, represented by equation

set (3), can be removed by the use of m Lagrange multipliers, lr {r = 1, 2, ... , m).

Thus Eq. (3) can be incorporated into Eq. (1) yielding

(4)

where now the quantities, 8qs, are all entirely arbitrary. This then provides the

following n equations:

+ <- = i.2 "> (5)

which, along with the constraint equations (2), describe the motion of the mechan-

ical system. This alternative formulation which is also fundamental to Lagrangian

mechanics, consisting of Eqs. (5) and (2), will be referred to as formulation L2.

We observe that while formulation L2 allows arbitrary displacements, 3qs, formu-

lation LI does not. Yet, in formulation L2 the m additional Lagrange multipliers,

Ar, need to be determined. We note therefore that formulation L2 relies on an expan-

sion of the set of unknowns (i.e., the q 's) to include the Lagrange multipliers. Thus
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formulation L2 provides a set of differential equations coupled to a set of noninte-

grable constraint equations through the Lagrange multipliers. The elimination (or

determination) of these Lagrange multipliers is by no means a simple affair, either

analytically or computationally, when one is considering systems with many, many

configuration coordinates and many constraints, i.e., systems with large n and m.

Also, there appears to be no general way of solving equation sets (5) and (2) simulta-

neously for arbitrary constraint equations. Determination of the Lagrange multipliers

is dependent on the specific nature of the constraints thus leading to a case-by-case

analysis of the constrained motion of nonholonomic systems. No general way of

solving for them in terms of an as-yet-unspecified set of general constraint equations

is possible.

An alternative approach for handling Lagrange formulation LI was provided by

Gibbs and Appell (working independently) in the late eighteen to early nineteen-

hundreds [3, 4], They expanded the set of coordinates used to describe the mo-

tion of nonholonomically constrained systems through the use of quasi-coordinates.

These quasi-coordinates are not, in general, explicit functions of the original coor-

dinates used to describe the motion of the nonholonomic system, but are expressed

in nonintegrable, Pfaffian form. The set of Pfaffian equations defining the quasi-

coordinates and the set of constraint equations are then used jointly to eliminate

all but the minimum number of coordinates needed to specify the dynamics of the

system. The formulation results in the Gibbs-Appell equations [3, 4, 5], While the

quasi-coordinates may be freely chosen, their actual selection and the subsequent

elimination procedure that follows are issues that depend critically on the specific

nature of the problem at hand. Indeed, the Gibbs-Appell approach requires the fol-

lowing steps to obtain the equations of motion: (a) selecting the quasi-coordinates,

(b) performing the subsequent eliminations and creating the Gibbs function, (c) dif-

ferentiating the Gibbs function appropriately, and, (d) determining the generalized

forces after elimination. No procedure to perform any of these steps, in a general

setting, is available at present. This makes the Gibbs-Appell approach and the resul-

tant formulation, once again, problem-specific, dependent on the specific nature of

the constraint equations.

At the present time, this is the impasse at which Lagrangian mechanics is. As

such, it precludes the rapid and systematic solution, both analytically and/or com-

putationally, of problems that arise in many important areas of application such as

multi-body dynamics, motion tracking-control of machine-tools, robotics, etc.

In this paper we show that by using the line of thinking pursued by Gauss when

he derived the Principle of Least Constraint [6], the Lagrange formulation LI can

be recast to obtain a quadratic programming problem. This constrained quadratic

minimization problem is solved explicitly using the theory of generalized inverses.

Therefore, without the need for any Lagrange multipliers or the need for felicitously

choosing quasi-coordinates that are problem specific, an explicit set of differential

equations of motion is obtained. This set can then be analytically and/or compu-

tationally handled. In this paper, we thus provide an alternative approach to the

analytical dynamics of discrete systems by developing the explicit equations (and a
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general formulation) for describing the motion of general, constrained dynamic sys-

tems. Like Lagrange's equations for holonomic systems, which can be formulated

without prior knowledge of the specific generalized coordinates that are used, the

equations obtained herein are formulated without the need for prior knowledge of

the specific set of constraints.

We begin, in the next section, by recasting the LI formulation into a quadratic

minimization problem. The section that follows provides the solution to this mini-

mization problem using generalized inverses. The next section attempts to link our

new results with the L2 formulation, thereby exposing some deep connections and

providing results of practical value for the control of mechanical systems so that

they "follow" certain constraints. We then present two simple examples showing the

efficacy of the approach, and end with a brief discussion of our new results and a

comparison with earlier work.

Lagrangian mechanics as a quadratic minimization problem. We begin by recasting

formulation LI as a constrained minimization problem. We do this in the same vein

as Gauss did in his original paper [6], albeit in a more general framework. The results

we provide are new and not available in the usual treatises on analytical dynamics

(e.g., in references [3, 5, 7]).

Consider the constrained system for which qs and qs (s = 1, 2, ... , n) are

known at time t. Given these quantities and the constraints (2) we can equiva-

lent^ describe these constraints by differentiating Eq. (2) once to get the linearly

independent relations

n

J2Drs^s- 8r = ° (r= 1,2,... ,/n), (6)
5=1

where gr is, in general, a function of time t, and qj, q} {j = 1, 2, ... , n). Thus

the trajectory qs{t) of our mechanical system satisfies Eqs. (1), (3), and (6).

Let us denote by a possible configuration of the system any configuration that

satisfies the equations of constraint. Then, starting from the configuration already

known at time t, denoted by qs and qs, we can describe the displacements, ve-

locities, and accelerations related to this possible configuration by qs, qs, and ~qs

{s = 1,2,...,«). Since this is a possible configuration, it must satisfy the con-

straint equations
n

J2Drs4s~ Sr = ° (r = 1» 2, ... , m). (7)
5=1

Subtracting Eqs. (6) and (7) we obtain

n

E Drs(l~V = ° (r = 1, 2, ... , m). (8)
5=1

Since the quantities (qs - qs) (s = \, 2n) satisfy Eq. (3), they represent, by

definition, a set of virtual displacements. Thus these possible acceleration changes

from the true acceleration of the system (starting from the same time and system
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state) satisfy the same constraints as virtual displacements and need not be small.

Thus we can recast the LI formulation (specifically Eq. (1)) as

(9)

where qs (s = 1, 2,...,«) are the accelerations that are relevant to any possible

configuration of the system starting with the given qs and qs at time t. Noting that

the kinetic energy is a quadratic function in qs, it is always expressible as

T = \ililauv%iv + E + (10)
U= 1 U=1 u~ 1

where auv, bu, and c are, in general, functions of: (a) the time t, (b) the val-

ues of the point masses in the system, and (c) the configuration coordinates qs,

s = 1,2Furthermore, the n x n matrix A — [auv] is always symmet-

ric and positive definite [2]. Denoting the vector {qxq2--q„) '•= <7, the vector

{Qx Q2 " • Qn)J '•= Q > and the vector (Q[ Q'2 - Q'n)T := Q', we can rewrite Eq. (9),

using Eq. (10) (see, e.g., [2, pp. 221-223]) as

{Aq + f(q, q , t) — Q)T(4 - q) := (/T(<J - q) = 0, (11)

where / and Q are ^-vectors that are each functions of q, q, and t. Physically,

the vector Q1 is the generalized force exerted on the dynamic system due to the

constraints (2), and relation (11) can be viewed as nothing but a restatement of

D'Alembert's principle of virtual work.

Since relation (11) must be true for all possible configurations we next show that

this leads to a minimum principle. We first present the following lemmas.

Lemma 1. For any symmetric matrix Y, and any set of vectors b, c, and y, we

have

(.b - y)JY(b - y) - (b - c)TY(b - c) = (y - c)JY{y - c) - 2(b - c)JY(y - c). (12)

Proof. This identity can be directly verified. □

When Y is positive definite, result (12) can be thought of geometrically as a

generalization of the "cosine rule" in a triangle and can be expressed in terms of

inner products as

(b - y, b - y)Y - (b - c, b - c)Y = (y - c, y - c)Y - 2(b - c, y - c)Y, (13)

whereby (u,v)Y we mean uTYv .

Lemma 2. Any displacement vector, (q - q), satisfies the relation

{Aq + f(q, q, t) — Q)TA~l(A'q + f(q , q, t) - Q)

-(Aq + f{q,q, t) - Q)T A~l(Aq + f{q , q , t) - Q) (14)

= (<? - q)JA(k ~q) + 2(Aq + f(q, q, t) - Q)1\~q - <?),

where A is any symmetric positive-definite matrix.
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Proof. Noting that A is a symmetric positive-definite matrix, in Eq. (12) set

Y = A, b — A~l(Q — f), c = q, and y = Q. (15)

The result follows. □

We next present the following result.

Result 1. For the virtual displacement vector (| - q) that satisfies Eq. (11), the

minimum value of

G := (Aq + f(q , q, t) - Q)TA~X(A'q + f(q, q, t) - Q) (16)

given q and q at time t, over all possible configurations, is obtained for fi(t) = q(t).

Noting the definition of Q1, thus the dynamic system behaves as though it minimizes

the measure of constraint given by

G = (Q',Q')a-> (17)

at each instant of time. We will refer to G as the Gaussian.

Proof. Using Lemma 2 and noting Eq. (11) we get

(A$ + f{q, q, t) - Q)J A'1 (A~q + f(q , q , t) - Q)

- {Aq + f{q, q, t) - Q)JA~l(Aq + f(q , q, t) - Q) = (| - q)TA($ - q).

As the matrix A is positive definite, the right-hand side of Eq. (18) is always positive

and therefore the minimum of (16) occurs when q(t) = q(t). Hence the actual

motion of the constrained mechanical system is such as to minimize the constraint

force, or Gaussian, G , as shown in Eq. (17). □

We note that this minimum is a global minimum. The reasoning provided in this

section while in the spirit of Gauss's original paper deviates substantially from it in

that we do not need to consider the possible configurations over the infinitesimal time

interval (t,t + dt) as did Gauss. Furthermore, our results are applicable to systems

whose configuration is described by generalized coordinates. Result 1 states the fol-

lowing: Given that we know the state (i.e., q and q) of a dynamic system at time

t, of all the possible accelerations at that time consistent with the constraints, the

actual one that the constrained dynamic system "chooses" is the one that minimizes

the Gaussian, G, at that time.

This leads us to the conclusion that given the state of a constrained mechanical

system at time t0 , the acceleration of the system at each instant of time beyond and

including time t0 , must be such that it:

(1) minimizes G given by Eq. (16) (or (17)) at each instant of time, and

(2) satisfies the set of constraint equations at each instant of time.

Thus we are led to a quadratic programming problem stated as follows:

Given q(tQ) and q(t0), find q(t0) such that the Gaussian

(1) G := (Aq + f{q, q, t) - Q)TA~l {Aq + f(q, q , t) - Q) is a minimum (19a)

and
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(2) Dq - g = 0, (19b)

where the m x n matrix D = [Drj] , and the m-vector g is (gj g2 ■ ■ ■ gm) .

Relations (19a) and (19b) constitute a new reformulation of Lagrangian dynam-

ics as a constrained quadratic minimization problem. It is interesting to note that

the entirety of Lagrangian dynamics is encapsulated in these two relatively simple

relations.

Solution of the quadratic programming problem. The solution to the minimization

problem posed by Eqs. (19a) and (19b) can be explicitly provided as follows. Using

Eq. (19b) we can obtain the vector q as

Q = D~g + (/ — D D)h, (20)

where the n x m matrix D~ is any generalized inverse (^-inverse) of D which

satisfies the relation

DD~D = D, (21)

and the vector h is arbitrary [8]. Substituting relation (20) in (19a) we thus need to

find the vector h such that we obtain

Min\\Hh-z\?2, (22)

where

and

H = Am(I-D D), (23)

z = -Al,2{D-g + A-\f-Q)}. (24)

The solution to the least-squares problem posed in (22) can be expressed as [8]

h = H~z + (I-H~H)w, (25)

where w is again an arbitrary vector and Hh is any "generalized least-squares in-

verse" of the matrix H. This least-squares inverse is defined by the relations

HH~H = H, (26)

[HH-? = HH-. (27)

Using (25) in (20) yields the solution

q = {D~ - (/ - D~D)H-Al/2D-}g + {(/ - D~D)H~A~l/2(Q - /)}

+ {(/ - D~D)w -(/ - D~D)H~Hw).

The last expression in braces on the right-hand side is zero, because we can al-

ways express //j~ as {I- D~ D)^A~X/2, where (I - DD)(I - D~ D)~(I - D~ D) =

(I - D~D). Hence we obtain the general equations of motion of the constrained

system as

Q = {D~ — (I — D~D)H-Al/2D-}g + {(/ - D~D)H~A~l,2(Q - /)} . (29)
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In general, the elements of the matrices A, D, and H are functions of q and t;

the vectors / and Q are functions of q, q , and t.

We note that the inverses D~ and H~ are, in general, two different types of

inverses: the first is any g-inverse of D, the second is any least-squares g-inverse

of H. The expression (29) leaves the actual choice of these inverses open. The

Moore-Penrose (MP) inverse [8] is a subset of each of these inverses and may be

used for both D~ and //," . It has the advantage of being unique and of being

readily available in many computing environments. Both Eqs. (28) and (29) would

therefore be valid when the MP inverse replaces the generalized inverses indicated in

these equations. In particular, we observe that Eq. (29) then leads to the fundamental

equations of motion

q = {D+ -(I- D+D)H+Al,2D+}g + {(/ - D+D)H+A~X,1(Q - /)} , (30)

where the superscript "+" is used to denote the unique MP generalized inverse. Here

D+ is the MP inverse of D and H+ is the MP inverse of Al^2(I — D+D).

Despite the different choices of the inverses in Eq. (29), since the matrix A is

positive definite, the solution of the constrained minimization problem (19) exists

and is unique as long as the equation set (19b) is consistent [9]. We note that this

solution (given by either of Eqs. (29) or (30)) is unique even when the rank of D

is less than m, as long as the system of equations (19b) is consistent and A is

nonsingular.

When there are no constraints on the mechanical system, the solution to the least

squares problem represented by (19a) is naturally given by

q = A~\Q-f), (31)

as Eq. (19b) no longer exists. Alternately, one can obtain this result from Eq. (29) by

using the m independent constraint equations (19b) with the m x n matrix D = 0

and the vector g - 0. In this case D~ = 0 and //," = A~l/1.

Connections with the LI and L2 formulations. We now explore the connections

which our new system of equations for constrained, discrete mechanical systems has

with the LI and L2 formulations. In particular we are interested in two things.

Firstly, can we explicitly determine the forces of constraint on the system generated

by virtue of the system being constrained by the equation set (2)?; and, secondly,

knowing Eq. (29) can we obtain explicitly the Lagrange multipliers in Eq. (5) di-

rectly? Both these aspects will provide a deeper understanding of the results obtained

so far. In addition, the first aspect is important, from an applications standpoint,

in determining the control forces required to be provided for a system to satisfy a

given set of constraints. Such situations occur often in practical situations when one

wants, say, a robot-arm or a precision tool to follow a prescribed trajectory.

(a) Explicit determination of the control forces. Noting that the effect of the con-

straints provided by Eq. (2) is to provide a set of constraining forces on the me-

chanical system, we can express the equations of motion of the constrained system

as
q = A~l(Q + Q'-f), (32)



LAGRANGIAN MECHANICS, GAUSS'S PRINCIPLE, AND GENERALIZED INVERSES 237

where the generalized force vector contributed by the constraints is represented, as

before, by Q'. Comparing Eqs. (29) and (32) we obtain

Q' = (I- AXA~1)[f(q, q, t) - Q] + A(I - X)D~g, (33)

where we have denoted by the matrix X the quantity (/ - D~D)H^ A1^2.

Thus we have explicitly determined the control force Q' required for the mechan-

ical system to "follow" the constraints given by Eq. (2). We note that this force, in

general, constitutes a feed-back control force since it depends on q(t), q(t), and t.

Furthermore, the control can be split as a linear combination of two components,

one of which varies linearly with the vector g.

(b) Explicit determination of Lagrange multipliers. We observe from the equation

set (5) that the constraint forces are given by the relation

DJA=Q', (34)

where the m-vector A of Lagrange multipliers is defined by A : = [A{ a2- ■ Am] .

The vector Q' is the constraint force «-vector. Noting that matrix D has rank m

(since we assume, for the L2 formulation, that the m constraints are independent),

the mxm matrix (DDJ) is nonsingular because DT has all its m columns linearly

independent. Multiplying both sides of Eq. (34) by D, and using Eq. (33), we obtain

the Lagrange multipliers explicitly as

A = (DDJ)-]DQ' = (DDJ)~lD{(I—AXA~1)[f(q, q, t)-Q\+A(I-X)D~g} . (35)

These multipliers have thus been obtained in closed form for general constraints

which need not be known a priori. We note that they are, in general, functions of

q(t), q(t), and t.

Illustrative examples. We consider two examples of nonholonomic systems. We

illustrate the applicability of our results by explicitly determining the differential

equations of motion of these constrained systems. These examples have been taken

from Rosenberg's book [2, pp. 240 and 258, respectively],

1. Consider a particle moving in three-dimensional euclidean space, free of any

"given" forces. Let its position at any time t be denoted by (x, y, z). The particle

is subjected to the nonholonomic constraint y = zx. The initial conditions are

specified so that at time t = 0, the particle satisfies this constraint. Determine the

accelerations of the particle so that it always satisfies the constraint; or, alternatively,

find the constraint forces so that the particle satisfies the constraint?

Here, (qx = x, q-, = y, q3 = z), and the particle is subjected to the nonholonomic

catastatic constraint

y = zx, (36)

and the "given" forces are all zero. The system has two degrees of freedom; yet, the

nonholonomic nature of the constraint requires three coordinates for a specification

of the system's configuration.

The matrix D = [-z 1 01 here, and the matrix D = —*-j-[—z 1 0]T . The matrix
l J » (l+z )

A and the vector g are scalars equal to unity and zx respectively. The vectors
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/ and Q are zero, and the MP inverse of (/ - D~D), obtained by using full rank

factorization, is given by

1 z

(I - D D)+=

(1 + z2) (1 + z2)

z

:i + ^2) (i + z2)

(37)

0 0

Using Eq. (29) we obtain explicitly the constrained equations of motion as

zx

(1 + z2)

-z

1

0
(38)

which are of course the same as Rosenberg's result [2, p. 240], From this expression

the constraint forces can be easily obtained.

2. Consider a particle of constant mass m , moving in two-dimensional euclidean

space. The components of the "given" forces acting on it are X and Y . The particle

is constrained to move so that x - ty = a(t). The initial conditions are prescribed

so that at time t — t0, the particle satisfies the constraint. What are the equations of

motion for the system for t > tQl What is the constraint force needed to guide the

particle so that it satisfies the constraint?

The system has only one degree of freedom, yet we need two coordinates to specify

its configuration because the particle satisfies the acatastatic constraint,

x-ty = a(t), (39)

where a is a given function of time. The "given" forces are prescribed a priori to

be X and Y.

uic VCLIU1 s — yy t uj , anu u — — '—M — y1

The MP inverse of H is given by

Here, the matrix D — [ 1 - t], the vector g = [y + a], and D = [ 1 - ;]

m"'/2H+= m

(1+'2)

t2 t

t 1
(40)

and the equations of motion of the constrained system are easily obtained by using

Eq. (29) as

0 + '2)
mx

my

t2 t

t 1
+ m(y + a)

1

-t (41)

Reference [2], p. 258, has considered the case when a in Eq. (39) is a constant. For

this case, the result in [2], after some algebra, is identical to that given by Eq. (41).

The control force required to be applied to "guide" this particle along the trajectory

described by Eq. (39), is obtained explicitly, using Eq. (33), as

Q
q:

i

(i+'2)

i -t

-t t2

m(y + a)

0 + '2)

1

-t (42)

Conclusions. In this paper we expose the connections between four seemingly dis-

parate topics—Lagrangian mechanics, Gauss's Principle, quadratic programming,
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and generalized inverses of matrices—and thereby obtain the explicit equations of

motion for constrained, discrete mechanical systems. We consider systems encoun-

tered within the general framework of Lagrangian mechanics.

Starting with formulation LI we have, specifically

(1) recast Lagrangian mechanics as a constrained quadratic minimization prob-

lem; and

(2) obtained the explicit solution of this quadratic minimization problem through

the use of the theory of generalized inverses of matrices.

In addition to the determination of the equations of motion, the development has

led to the explicit determination of

(a) the forces of constraint that the system is subjected to, and

(b) the Lagrange multipliers that are germane to formulation L2.

Below we discuss some of the main features of our results, comparing them with

previous approaches.

1. One of the main advantages of Lagrangian mechanics is that it provides an

explicit formulation for the equations of motion for holonomic systems in terms of

an undefined set of generalized coordinates (i.e., no prior selection of a specific set of

coordinates is required to formulate the problem). The new approach provided here

extends this concept to the explicit formulation of the equations of motion for both

holonomic and nonholonomic mechanical systems in terms of also an undefined set

of constraint equations (i.e., no prior selection of a specific set of constraint equations

is required to yield the explicit equations of motion).

We circumvent the need to use the Lagrange formulation L2 and the consequent

need to determine the Lagrange multipliers, thereby creating a general formalism that

is not dependent on the specific set of constraint equations defining the problem.

This new feature has not been available to date, we think, in the presently avail-

able approaches in analytical mechanics; in fact, its absence is responsible for the

severe bottle-neck in our ability to handle large-order nonholonomically constrained

systems.

2. It is worthwhile comparing the formulation presented here with the famed

Gibbs-Appell equations [3, 4], These equations, which were first published in 1899,

are considered by Pars as (see [3, p. 202]) "probably the simplest and most compre-

hensive form of the equations of motion so far discovered." The differential equation

formulation of discrete, constrained systems presented in this paper appears to be

superior to the Gibbs-Appell formulation both in terms of its utility and its aesthetic.

In the Gibbs-Appell approach, instead of using a set of Lagrange multipliers to han-

dle the Lagrange formulation LI, the set of coordinates used to describe the system

is expanded. An additional p quasicoordinates are used. These quasi-coordinates

are related, through nonintegrable Pfaffian forms, to the coordinates that define the

system's configuration. This expanded set of coordinates, along with the constraint

equations, are then used to express all the coordinates in terms of a set of any k

coordinates where k represents the number of degrees of freedom of the system.

The Gibbs-Appell equations of motion are then obtained in terms of these privileged
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k coordinates [3], As pointed out by Pars, and by Neimark and Fufaev (see [3] and

[5]), the choice of the quasi-coordinates, the subsequent elimination procedure, as

well as the determination of the generalized forces corresponding to these k privi-

leged coordinates, is problem specific; these cannot be determined without knowledge

of the specific constraints present. Thus the Gibbs-Appell formulation, which requires

a felicitous choice of quasi-coordinates for each specific problem situation, lacks the

generality and directness of the present formulation which is applicable to systems

where the constraints need not be specified a priori; all we require is that they be

expressible in Pfaffian form.

Our direct approach, which explicitly yields the equations of motion, does not

require us to expand the set of coordinates and thus averts the need for choosing

the additional quasi-coordinates (which must then be followed by the elimination

procedure, etc.). Moreover, it is symmetric in that it does not rely on the creation of

a "privileged" set of k coordinates, in whose terms the entire system's dynamics is

then expressed.

3. We provide the necessary differential equations of motion in terms of the co-

ordinates originally chosen to specify the configuration of the system. For nonholo-

nomically constrained systems, the number of these coordinates exceeds the number

of degrees of freedom. No privileged set of coordinates (equal to the number of

degrees of freedom) is used here. Our results therefore may have a greater physical

and intuitive appeal, as explicit differential equations for the constrained system are

provided, directly describing the time-evolution of each of the coordinates originally

used to describe the system's configuration. This may lead to an improved physi-

cal understanding of the dynamics of the system, an additional advantage over the

Gibbs-Appell formulation.

4. The approach to analytical dynamics provided here handles all the different

types of constraints with equal ease. Thus the approach is valid for holonomic,

nonholonomic, scleronomic, rheonomic, catastatic, and acatastatic constraints. The

somewhat artificial classification of constraints in this fashion, brought about by

the previous inability of Lagrangian mechanics to provide the explicit equations of

motion in terms of a set of constraints that are not specified from the start, is therefore

made unnecessary, and perhaps obsolete. An important aspect of our results is that

the procedure provided here can be easily automated so as to handle the dynamics

of general systems with general constraints.

5. The approach provides a general formulation for determining the "control, or

constraint, forces" required to cause a system to satisfy a set of holonomic and/or

nonholonomic constraints. This set of constraints does not need to be specified prior

to the formulation. This aspect of our results has important applications in the areas

of active control of structural and mechanical systems. We anticipate its imminent

use for systems, like tall buildings subjected to strong earthquake ground shaking, and

for robot-arms and machine tools which require to be "guided" so that they follow a

given trajectory, or more generally, satisfy a given set of constraints.

6. The approach presented here has deep connections to the Lagrange multiplier

formulation (referred to as formulation L2). Using our results one can obtain the
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Lagrange multipliers explicitly, again, in terms of an undefined set of constraints.

7. Very often in large-order systems with a large number of constraints (i.e., when

m is large), it is difficult to establish the linear independence of the constraint equa-

tions. This sometimes becomes especially troublesome when dealing with nonholo-

nomic constraints. The explicit equations of motion obtained here are valid even

when these constraint equations are not independent, as long as they are consistent.

8. The formulation of analytical dynamics presented here is somewhat more gen-

eral and can handle mechanical systems that fall outside the usual preview of La-

grangian dynamics [5]. For instance, for one-sided constraints (e.g., constraints that

express impenetrability across a surface, and configuration constraints [2]) which are

typically generated by inequality constraints, the quadratic programming problem

defined by (PI) is still valid with the expression for G being the same as in Eq. (17).

Some of the constraint equations, however, may now be inequalities. The solution of

this constrained quadratic problem will yield the motion of the mechanical system.

Such extensions of our primary results, we think, will be fruitful areas for future

research and will be addressed in future communications.

Note added in proof. Due to the lapse in time between the submission of this

paper and its appearance in print the authors point out that the following later paper

may be of interest to the reader: "On Motion", by F. E. Udwadia and R. E. Kalaba,

Journal of the Franklin Institute, vol. 330, no. 3, pp. 571-577, 1993.
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